One sample hypothesis testings
Null hypothesis H0: already known, established, default, status quo, old,
pre-existing, current practice, well-known,
working assumption, nothing new, boring. The (generic) parameter φ equals some number a.
Alternative hypothesis HA: new, exciting, hoped/wished, changed, different, research, challenger.
Either the parameter φ<a, or φ>a, or φ≠a.
Test if the sample (i.e. its statistic and its size, n) provides enough evidence
to overthrow ("warrant rejection of") the null hypothesis.
Is the sample statistic extreme enough.
Either "reject" or "fail to reject" the null hypothesis; never "accept" it.
Rejecting it ≡ "support" the alternative.
The alternative hypothesis is neither rejected nor accepted.
Nothing is ever "proven".
8-3. T-Test for mean μ.
Uses μ, s, x̄, and n.
Test statistic is t.
Data is normal or n≥30.
8-3 (Obsolete). Z-Test for mean μ if σ known (rare)
[or with large n and use s for σ]. Uses μ, σ, x̄, and n.
Test statistic is z.
Data is normal or n≥30.
8-2. 1-PropZTest for proportion p.
Uses #yeses or p̂, p, and n.
Test statistic is z.
Binary nominal data.
Normal distribution is approximating a Binomial distribution.
8-4. Χ2-test for standard deviation σ.
Uses σ, s, and n.
Test statistic is Χ2.
Population must be normal.
The test statistic is a measure of discrepancy between a sample statistic
and the H0 claimed value of the population parameter.
Exs.
T-test: μ=100, s=10, n=30. Try x̄= 102, 103, 104, 105. Ha>H0
T-test: μ=100, s=10, n=30. Try x̄= 102, 103, 104, 105. Ha≠H0
Effect of s:
T-test: μ=100, s=5, n=30. Try x̄= 101, 102, 103. Ha>H0
T-test: μ=100, s=5, n=30. Try x̄= 101, 102, 103. Ha≠H0
Effect of n:
T-test: μ=100, s=10, n=100. Try x̄= 101, 102, 103. Ha>H0
T-test: μ=100, s=10, n=100. Try x̄= 101, 102, 103. Ha≠H0
NB. p-hacking: great pressures (professional, monetary, publication bias, ideological)
to have positive result.
So cheating and lying by:
stop data collection when p≤.05
discard data that prevents p≤.05
repeat the experiment until get p≤.05
test for different effects until find one with p≤.05
NB. Also possible to have:
H0: φ≤a and HA: φ>a
H0: φ≥a and HA: φ<a
NB. With very large sample a very small difference between x̄ and claimed μ
can be "significant".