Trigonometric function graphs

periodic, cyclic, repeating

click for larger image file.

Interactive trig functions app
Interactive circle, trig, radians, arc length app
Interactive Laws of sines and cosines app

  
SOH CAH TOA:

If know distance adj to pole, tower, etc. and angle a to top of the pole,
then the height opp of the pole is adj · tan a and
the dsitance hyp to top of pole is adj · sec a

If know distances adj to pole, tower, etc. and hyp to top of pole
then the height opp of the pole is adj · tan(arccos(a/hyp))


The co- functions are the corresponding trig function of the complement of the angle:
cos(a) = sin(90-a)
cot(a) = tan(90-a)
csc(a) = sec(90-a)

sine is the fundamental function, all others can be drefined in terms of it:
cos(x) = sin(x+π/2)

   

360° / 2π radians = ~57° / 1 radian
Unit circle: center angle in radians equals arc length
Unit circle: sector of central angle 1 radian has area 1/2
Degrees ° a Radians x = cos a y = sin a x2+y2=1 slope of tangent line = - 1 / tan a = -cot a
0 0 1 0 1+0
~14.47 ~.2527 √15/4 ≈.968 1/4=.25 15/16+1/16 -√15 ≈-3.873
15 π/12 ≈ .2618 (√6+√2)/4≈.966 (√6-√2)/4≈.258 .933+.0667 -(2+√3) ≈-3.732
30 π/6 ≈ .5235 √3/2 ≈.866 1/2=.5 3/4+1/4 -√3 ≈-1.732
~35.26 ~.6155 √2/√3 ≈.816 1/√3 ≈.577 2/3+1/3 -√2 ≈-1.414
45 π/4 ≈ .7853 √2/2 ≈.707 √2/2 ≈.707 1/2+1/2 -1
~54.74 ~.9553 1/√3 ≈.577 √2/√3 ≈.816 1/3+2/3 -1/√2 ≈-.707
~57.29 1 ~.5403 ~.8414 .2919+.7079 ~-.642
60 π/3 ≈ 1.047 1/2=.5 √3/2 ≈.866 1/4+3/4 -1/√3 ≈-.577
75 5π/12 ≈ 1.309 (√6-√2)/4 ≈ .2588 (√6+√2)/4 ≈ .966 .067+.933 -(2-√3) ≈-.268
~75.52 ~1.318 1/4=.25 √15/4 ≈.968 1/16+15/16 -1/√15 ≈-.258
90 π/2 ≈ 1.571 0 1 0+1 0

change in sine every 15°
15° 30° 45° 60° 75° 90°
sine 0 .258 .5 .707 .866 .968 1
Δ .258 .244 .207 .159 .104 .032









First and second derivatives of sine function:


First and second derivatives of tan function:




     
     


   
       
   
       
           

     

     

     
     






           
  
hyperbolic sin and hyperbolic cos: