Summary of functions
class of function ƒ ƒ' ƒ'' increasing/decreasing/constant extrema concavity inflection points
constant ƒ(x)= h 0 0 constant
linear ƒ(x)= mx m 0 m>0: increasing, m<0: decreasing
quadratic ƒ(x)= ax2+bx+c 2ax+b 2a a>0: decreasing, then increasing
a<0: increasing, then decreasing
Global:
a>0: min, a<0: max
(-b/2a,ƒ(-b/2a))
a>0: up, a<0: down
cubic ƒ(x)= ax3+bx2+cx+d 3ax2+2bx+c 6ax+2b all inc or all dec or inc/dec or dec/inc None (if all dec or all inc) or
Local min and max
up/down or down/up (-b/(3a),ƒ(-b/(3a))
m=ƒ'(-b/(3a))
exponential ƒ(x)= ex ex ex increasing up
logarithmic ƒ(x)= ln x 1/x -1/x2 increasing down
Gaussian ƒ(x)= e-x2 -2xe-x2 (4x2-2)e-x2 increasing on (-∞,0)
decreasing on (0,∞)
max (0,1) up/down/up two: (±1/√2,1/√e)
m=±√2/√e≈.858
Standard normal ƒ(x)= e-x2/2/√(2π) -xe-x2/2/√(2π) (x2-1)e-x2/2/√(2π) increasing on (-∞,0)
decreasing on (0,∞)
max (0,1/√(2π)) ≈.3989 up/down/up two: (±1,1/√(2πe)) ≈.242
m=±1/√(2πe)≈±.242
Trig ƒ(x)= sin x cos x -sin x increasing π, then decreasing π maxima ((4n+1)π/2,1)
minima ((4n-1)π/2,-1)
up for π, down for π (nπ,0) n∈ℤ
m=±1
Trig ƒ(x)= tan x sec2 x 2sec2tan x increasing. Vertical asymptote every π up for π/2, down for &pi/2; (nπ,0) n∈ℤ
m=1 min
Hyperbolic ƒ(x)= cosh x sinh x cosh x decreasing then increasing min (0,1) up
Hyperbolic ƒ(x)= sinh x cosh x sinh x increasing up then down (0,0)
m=1 min