Confidence interval for a population mean μ: if do not know σ (this is usually the case).
t-test, t-procedure
Assumes population is Normal or sample size n>30.
Try: 37 100 15 At 95% CL E is ~5 At 99% CL E is ~6.7 100 100 10 vs. 1000 100 10 effect of sample size n 100 0 1 vs 1000 0 1 100 0 1 vs 100 0 2 effect of sample standard deviation s
If know σ, use Z-test: Zc(σ/√n)
where Zc= 1.645 for 90% CL, 1.96 for 95% CL, 2.326 for 98% CL, 2.576 for 99% CL.
Minimum sample size n for given (estimated) σ, E, and C.L.=1-α
t distribution: ν=degrees of freedom
mean=0
σ=√(ν/(ν-2)) ν>2
skew= 0 ν>4, undefined 1,2,3
kurtosis= 6/(ν-4) ν>4, ∞ 3,4, undefined 1,2
df | SD=√(df/(df-2)), df>2 |
---|---|
1 | undefined |
2 | ∞ |
3 | √3≈1.732 |
4 | √2≈1.414 |
5 | √5/√3≈1.29 |
9 | 3/√7≈1.134 |
s | n | ||||
---|---|---|---|---|---|
10 | 30 | 100 | 300 | 1000 | |
1 | .3162 | .1826 | .1 | .0577 | .0316 |
10 | 3.162 | 1.826 | 1 | .5774 | .3162 |
100 | 31.62 | 18.26 | 10 | 5.774 | 3.162 |