The 8085 Instruction Set

As I promised, in an earlier lesson, I am going to go through an in-depth explaination of ALL the 8085 instructions.

 

----------------------------------------------------------------

|                                                              |

|                                                              |

|                            Intel                             |

|                                                              |

|         88888      000      88888    5555555      A          |

|        8     8    0   0    8     8   5           A A         |

|        8     8   0   0 0   8     8   5          A   A        |

|         88888    0  0  0    88888    555555    AAAAAAA       |

|        8     8   0 0   0   8     8         5   A     A       |

|        8     8    0   0    8     8         5   A     A       |

|         88888      000      88888    555555    A     A       |

|                                                              |

|         8085A MICROPROCESSOR Instruction Set Summary         |

|                                                              |

|                                                              |

|                                                              |

|                                                              |

|                                                              |

|                    _________    _________                    |

|                  _|         \__/         |_                  |

|          --> X1 |_|1                   40|_| Vcc (+5V)       |

|                  _|                      |_                  |

|          --> X2 |_|2                   39|_| HOLD <--        |

|                  _|                      |_                  |

|   <-- RESET OUT |_|3                   38|_| HLDA -->        |

|                  _|                      |_                  |

|         <-- SOD |_|4                   37|_| CLK (OUT) -->   |

|                  _|                      |_  ________        |

|         --> SID |_|5                   36|_| RESET IN <--    |

|                  _|                      |_                  |

|        --> TRAP |_|6                   35|_| READY <--       |

|                  _|                      |_     _            |

|     --> RST 7.5 |_|7                   34|_| IO/M -->        |

|                  _|                      |_                  |

|     --> RST 6.5 |_|8                   33|_| S1 -->          |

|                  _|                      |_  __              |

|     --> RST 5.5 |_|9                   32|_| RD -->          |

|                  _|                      |_  __              |

|        --> INTR |_|10      8085A       31|_| WR -->          |

|            ____  _|                      |_                  |

|        <-- INTA |_|11                  30|_| ALE -->         |

|                  _|                      |_                  |

|        <--> AD0 |_|12                  29|_| S0 -->          |

|                  _|                      |_                  |

|        <--> AD1 |_|13                  28|_| A15 -->         |

|                  _|                      |_                  |

|        <--> AD2 |_|14                  27|_| A14 -->         |

|                  _|                      |_                  |

|        <--> AD3 |_|15                  26|_| A13 -->         |

|                  _|                      |_                  |

|        <--> AD4 |_|16                  25|_| A12 -->         |

|                  _|                      |_                  |

|        <--> AD5 |_|17                  24|_| A11 -->         |

|                  _|                      |_                  |

|        <--> AD6 |_|18                  23|_| A10 -->         |

|                  _|                      |_                  |

|        <--> AD7 |_|19                  22|_| A9 -->          |

|                  _|                      |_                  |

|       (Gnd) Vss |_|20                  21|_| A8 -->          |

|                   |______________________|                   |

|                                                              |

|                                                              |

|                                                              |

|                                  Copyright (C) J.P.Bowen 1985|

        

Instructions can be categorized according to their method of addressing the hardware registers and/or memory.

        

Implied Addressing:

The addressing mode of certain instructions is implied by the instruction’s function. For example, the STC (set carry flag) instruction deals only with the carry flag, the DAA (decimal adjust accumulator) instruction deals with the accumulator.

        

Register Addressing:

Quite a large set of instructions call for register addressing. With these instructions, you must specify one of the registers A through E, H or L as well as the operation code. With these instructions, the accumulator is implied as a second operand. For example, the instruction CMP E may be interpreted as 'compare the contents of the E register with the contents of the accumulator.

        

Most of the instructions that use register addressing deal with

8-bit values. However, a few of these instructions deal with 16-bit register pairs.  For example, the PCHL instruction exchanges the contents of the program counter with the contents of the H and L registers.

        

Immediate Addressing:

Instructions that use immediate addressing have data assembled as a part of the instruction itself. For example, the instruction CPI 'C' may be interpreted as ‘compare the contents of the accumulator with the letter C. When assembled, this instruction has the hexadecimal value FE43. Hexadecimal 43 is the internal representation for the letter C. When this instruction is executed, the processor fetches the first instruction byte and determines that it must fetch one more byte. The processor fetches the next byte into one of its internal registers and then performs the compare operation.

        

Notice that the names of the immediate instructions indicate that they use immediate data. Thus, the name of an add instruction is ADD; the name of an add immediate instruction is ADI.

 

All but two of the immediate instructions uses the accumulator as an implied operand, as in the CPI instruction shown previously. The MVI (move immediate) instruction can move its immediate data to any of the working registers including the accumulator or to memory. Thus, the instruction MVI D, OFFH moves the hexadecimal

value FF to the D register.

        

The LXI instruction (load register pair immediate) is even more unusual in that its immediate data is a 16-bit value. This instruction is commonly used to load addresses into a register pair. As mentioned previously, your program must initialize the stack pointer; LXI is the instruction most commonly used for this purpose. For example, the instruction LXI SP,3OFFH loads the stack pointer with the hexadecimal value 30FF.

        

        

Direct Addressing:

Jump instructions include a 16-bit address as part of the instruction. For example, the instruction JMP 1000H causes a jump to the hexadecimal address 1000 by replacing the current contents of the program counter with the new value 1000H.

 

Instructions that include a direct address require three bytes of storage: one for the instruction code, and two for the 16-bit address

 

Register Indirect Addressing:

Register indirect instructions reference memory via a register pair. Thus, the instruction MOV M,C moves the contents of the C register into the memory address stored in the H and L register pair. The instruction LDAX B loads the accumulator with the byte of data specified by the address in the B and C register pair.

 

Combined Addressing Modes:

Some instructions use a combination of addressing modes. A CALL instruction, for example, combines direct addressing and register indirect addressing. The direct address in a CALL instruction specifies the address of the desired subroutine; the register indirect address is the stack pointer. The CALL instruction pushes the current contents of the program counter into the memory location specified by the stack pointer.

 

Timing Effects of Addressing Modes:

Addressing modes affect both the amount of time required for executing an instruction and the amount of memory required for its storage. For example, instructions that use implied or register addressing, execute very quickly since they deal directly with the processor’s hardware or with data already present in hardware registers. Most important, however is that the entire instruction can be fetched with a single memory access. The number of memory accesses required is the single greatest factor in determining execution timing. More memory accesses therefore require more execution time. A CALL instruction for example, requires five memory accesses: three to access the entire instruction and two more to push the contents of the program counter onto the stack.

 

The processor can access memory once during each processor cycle. Each cycle comprises a variable number of states. (See below and the appendix of “USING THE SDK-85 MICROPROCESSOR TRAINER”). The length of a state depends on the clock frequency specified for your system, and may range from 480 nanoseconds to 2 microseconds. Thus, the timing for a four state instruction may range from 1.920 microseconds through 8 microseconds. (The 8085 have a maximum clock frequency of 5 MHz and therefore a minimum state length of 200 nanoseconds.)

 

Instruction Naming Conventions:

The mnemonics assigned to the instructions are designed to indicate the function of the instruction. The instruc­tions fall into the following functional categories:

 

Data Transfer Croup:

The data transfer instructions move data between registers or between memory and registers.

 

MOV           Move

MVI           Move Immediate

LDA           Load Accumulator Directly from Memory

STA           Store Accumulator Directly in Memory

LHLD          Load H & L Registers Directly from Memory

SHLD          Store H & L Registers Directly in Memory

 

An 'X' in the name of a data transfer instruction implies that it deals with a register pair (16-bits);

 

LXI           Load Register Pair with Immediate data

LDAX          Load Accumulator from Address in Register Pair

STAX          Store Accumulator in Address in Register Pair

XCHG          Exchange H & L with D & E

XTHL          Exchange Top of Stack with H & L

 

Arithmetic Group:

The arithmetic instructions add, subtract, increment, or decrement data in registers or memory.

 

ADD           Add to Accumulator

ADI           Add Immediate Data to Accumulator

ADC           Add to Accumulator Using Carry Flag

ACI           Add Immediate data to Accumulator Using Carry

SUB           Subtract from Accumulator

SUI           Subtract Immediate Data from Accumulator

SBB           Subtract from Accumulator Using Borrow (Carry) Flag

SBI           Subtract Immediate from Accumulator Using Borrow (Carry) Flag

INR           Increment Specified Byte by One

DCR           Decrement Specified Byte by One

INX           Increment Register Pair by One

DCX           Decrement Register Pair by One

DAD           Double Register Add; Add Content of Register

              Pair to H & L Register Pair

 

Logical Group:

This group performs logical (Boolean) operations on data in registers and memory and on condition flags.

 

The logical AND, OR, and Exclusive OR instructions enable you to set specific bits in the accumulator ON or OFF.

 

ANA           Logical AND with Accumulator

ANI           Logical AND with Accumulator Using Immediate Data

ORA           Logical OR with Accumulator

OR            Logical OR with Accumulator Using Immediate Data

XRA           Exclusive Logical OR with Accumulator

XRI           Exclusive OR Using Immediate Data

 

The Compare instructions compare the content of an 8-bit value with the contents of the accumulator;

             

CMP           Compare

CPI           Compare Using Immediate Data

 

The rotate instructions shift the contents of the accumulator one bit position to the left or right:

 

RLC           Rotate Accumulator Left

RRC           Rotate Accumulator Right

RAL           Rotate Left Through Carry

RAR           Rotate Right Through Carry

 

Complement and carry flag instructions:

 

CMA           Complement Accumulator

CMC           Complement Carry Flag

STC           Set Carry Flag

 

Branch Group:

The branching instructions alter normal sequential program flow, either unconditionally or conditionally. The unconditional branching instructions are as follows:

 

JMP           Jump

CALL          Call

RET           Return

 

Conditional branching instructions examine the status of one of four condition flags to determine whether the specified branch is to be executed. The conditions that may be specified are as follows:

 

NZ            Not Zero (Z = 0)

Z             Zero (Z = 1)

NC            No Carry (C = 0)

C             Carry (C = 1)

PO            Parity Odd (P = 0)

PE            Parity Even (P        = 1)

P             Plus (S = 0)

M             Minus (S = 1)

 

Thus, the conditional branching instructions are specified as follows:

 

Jumps         Calls        Returns

C             CC            RC      (Carry)

INC           CNC           RNC     (No Carry)

JZ            CZ            RZ      (Zero)

JNZ           CNZ           RNZ     (Not Zero)

JP            CP            RP      (Plus)

JM            CM            RM      (Minus)

JPE           CPE           RPE     (Parity Even)

JP0           CPO           RPO     (Parity Odd)

 

Two other instructions can affect a branch by replacing the contents or the program counter:

 

PCHL          Move H & L to Program Counter

RST           Special Restart Instruction Used

              with Interrupts

 

Stack I/O, and Machine Control Instructions:

The following instructions affect the Stack and/or Stack Pointer:

 

PUSH          Push Two bytes of Data onto the Stack

POP           Pop Two Bytes of Data off the Stack

XTHL          Exchange Top of Stack with H & L

SPHL          Move content of H & L to Stack Pointer

 

The I/0 instructions are as follows:

 

IN            Initiate Input Operation

OUT           Initiate Output Operation

 

The Machine Control instructions are as follows:

EI            Enable Interrupt System

DI            Disable Interrupt System

HLT           Halt

NOP           No Operation

 

----------------------------------------------------------------

|Mnemonic |Op|SZAPC|~s|Description               |Notes        |

|---------+--+-----+--+--------------------------+-------------|

|ACI n    |CE|*****| 7|Add with Carry Immediate  |A=A+n+CY     |

|ADC r    |8F|*****| 4|Add with Carry            |A=A+r+CY(21X)|

|ADC M    |8E|*****| 7|Add with Carry to Memory  |A=A+[HL]+CY  |

|ADD r    |87|*****| 4|Add                       |A=A+r   (20X)|

|ADD M    |86|*****| 7|Add to Memory             |A=A+[HL]     |

|ADI n    |C6|*****| 7|Add Immediate             |A=A+n        |

|ANA r    |A7|****0| 4|AND Accumulator           |A=A&r   (24X)|

|ANA M    |A6|****0| 7|AND Accumulator and Memory|A=A&[HL]     |

|ANI n    |E6|**0*0| 7|AND Immediate             |A=A&n        |

|CALL a   |CD|-----|18|Call unconditional        |-[SP]=PC,PC=a|

|CC a     |DC|-----| 9|Call on Carry             |If CY=1(18~s)|

|CM a     |FC|-----| 9|Call on Minus             |If S=1 (18~s)|

|CMA      |2F|-----| 4|Complement Accumulator    |A=~A         |

|CMC      |3F|----*| 4|Complement Carry          |CY=~CY       |

|CMP r    |BF|*****| 4|Compare                   |A-r     (27X)|

|CMP M    |BF|*****| 7|Compare with Memory       |A-[HL]       |

|CNC a    |D4|-----| 9|Call on No Carry          |If CY=0(18~s)|

|CNZ a    |C4|-----| 9|Call on No Zero           |If Z=0 (18~s)|

|CP a     |F4|-----| 9|Call on Plus              |If S=0 (18~s)|

|CPE a    |EC|-----| 9|Call on Parity Even       |If P=1 (18~s)|

|CPI n    |FE|*****| 7|Compare Immediate         |A-n          |

|CPO a    |E4|-----| 9|Call on Parity Odd        |If P=0 (18~s)|

|CZ a     |CC|-----| 9|Call on Zero              |If Z=1 (18~s)|

|DAA      |27|*****| 4|Decimal Adjust Accumulator|A=BCD format |

|DAD B    |09|----*|10|Double Add BC to HL       |HL=HL+BC     |

|DAD D    |19|----*|10|Double Add DE to HL       |HL=HL+DE     |

|DAD H    |29|----*|10|Double Add HL to HL       |HL=HL+HL     |

|DAD SP   |39|----*|10|Double Add SP to HL       |HL=HL+SP     |

|DCR r    |3D|****-| 4|Decrement                 |r=r-1   (0X5)|

|DCR M    |35|****-|10|Decrement Memory          |[HL]=[HL]-1  |

|DCX B    |0B|-----| 6|Decrement BC              |BC=BC-1      |

|DCX D    |1B|-----| 6|Decrement DE              |DE=DE-1      |

|DCX H    |2B|-----| 6|Decrement HL              |HL=HL-1      |

|DCX SP   |3B|-----| 6|Decrement Stack Pointer   |SP=SP-1      |

|DI       |F3|-----| 4|Disable Interrupts        |             |

|EI       |FB|-----| 4|Enable Interrupts         |             |

|HLT      |76|-----| 5|Halt                      |             |

|IN p     |DB|-----|10|Input                     |A=[p]        |

|INR r    |3C|****-| 4|Increment                 |r=r+1   (0X4)|

|INR M    |3C|****-|10|Increment Memory          |[HL]=[HL]+1  |

|INX B    |03|-----| 6|Increment BC              |BC=BC+1      |

|INX D    |13|-----| 6|Increment DE              |DE=DE+1      |

|INX H    |23|-----| 6|Increment HL              |HL=HL+1      |

|INX SP   |33|-----| 6|Increment Stack Pointer   |SP=SP+1      |

|JMP a    |C3|-----| 7|Jump unconditional        |PC=a         |

|JC a     |DA|-----| 7|Jump on Carry             |If CY=1(10~s)|

|JM a     |FA|-----| 7|Jump on Minus             |If S=1 (10~s)|

|JNC a    |D2|-----| 7|Jump on No Carry          |If CY=0(10~s)|

|JNZ a    |C2|-----| 7|Jump on No Zero           |If Z=0 (10~s)|

|JP a     |F2|-----| 7|Jump on Plus              |If S=0 (10~s)|

|JPE a    |EA|-----| 7|Jump on Parity Even       |If P=1 (10~s)|

|JPO a    |E2|-----| 7|Jump on Parity Odd        |If P=0 (10~s)|

|JZ a     |CA|-----| 7|Jump on Zero              |If Z=1 (10~s)|

|LDA a    |3A|-----|13|Load Accumulator direct   |A=[a]        |

|LDAX B   |0A|-----| 7|Load Accumulator indirect |A=[BC]       |

|LDAX D   |1A|-----| 7|Load Accumulator indirect |A=[DE]       |

|LHLD a   |2A|-----|16|Load HL Direct            |HL=[a]       |

|LXI B,nn |01|-----|10|Load Immediate BC         |BC=nn        |

|LXI D,nn |11|-----|10|Load Immediate DE         |DE=nn        |

|LXI H,nn |21|-----|10|Load Immediate HL         |HL=nn        |

|LXI SP,nn|31|-----|10|Load Immediate Stack Ptr  |SP=nn        |

|MOV r1,r2|7F|-----| 4|Move register to register |r1=r2   (1XX)|

|MOV M,r  |77|-----| 7|Move register to Memory   |[HL]=r  (16X)|

|MOV r,M  |7E|-----| 7|Move Memory to register   |r=[HL]  (1X6)|

|MVI r,n  |3E|-----| 7|Move Immediate            |r=n     (0X6)|

|MVI M,n  |36|-----|10|Move Immediate to Memory  |[HL]=n       |

|NOP      |00|-----| 4|No Operation              |             |

|ORA r    |B7|**0*0| 4|Inclusive OR Accumulator  |A=Avr   (26X)|

|ORA M    |B6|**0*0| 7|Inclusive OR Accumulator  |A=Av[HL]     |

|ORI n    |F6|**0*0| 7|Inclusive OR Immediate    |A=Avn        |

|OUT p    |D3|-----|10|Output                    |[p]=A        |

|PCHL     |E9|-----| 6|Jump HL indirect          |PC=[HL]      |

|POP B    |C1|-----|10|Pop BC                    |BC=[SP]+     |

|POP D    |D1|-----|10|Pop DE                    |DE=[SP]+     |

|POP H    |E1|-----|10|Pop HL                    |HL=[SP]+     |

|POP PSW  |F1|-----|10|Pop Processor Status Word |{PSW,A}=[SP]+|

----------------------------------------------------------------

----------------------------------------------------------------

|Mnemonic |Op|SZAPC|~s|Description               |Notes        |

|---------+--+-----+--+--------------------------+-------------|

|PUSH B   |C5|-----|12|Push BC                   |-[SP]=BC     |

|PUSH D   |D5|-----|12|Push DE                   |-[SP]=DE     |

|PUSH H   |E5|-----|12|Push HL                   |-[SP]=HL     |

|PUSH PSW |F5|-----|12|Push Processor Status Word|-[SP]={PSW,A}|

|RAL      |17|----*| 4|Rotate Accumulator Left   |A={CY,A}<-   |

|RAR      |1F|----*| 4|Rotate Accumulator Righ   |A=->{CY,A}   |

|RET      |C9|-----|10|Return                    |PC=[SP]+     |

|RC       |D8|-----| 6|Return on Carry           |If CY=1(12~s)|

|RIM      |20|-----| 4|Read Interrupt Mask       |A=mask       |

|RM       |F8|-----| 6|Return on Minus           |If S=1 (12~s)|

|RNC      |D0|-----| 6|Return on No Carry        |If CY=0(12~s)|

|RNZ      |C0|-----| 6|Return on No Zero         |If Z=0 (12~s)|

|RP       |F0|-----| 6|Return on Plus            |If S=0 (12~s)|

|RPE      |E8|-----| 6|Return on Parity Even     |If P=1 (12~s)|

|RPO      |E0|-----| 6|Return on Parity Odd      |If P=0 (12~s)|

|RZ       |C8|-----| 6|Return on Zero            |If Z=1 (12~s)|

|RLC      |07|----*| 4|Rotate Left Circular      |A=A<-        |

|RRC      |0F|----*| 4|Rotate Right Circular     |A=->A        |

|RST z    |C7|-----|12|Restart              (3X7)|-[SP]=PC,PC=z|

|SBB r    |9F|*****| 4|Subtract with Borrow      |A=A-r-CY     |

|SBB M    |9E|*****| 7|Subtract with Borrow      |A=A-[HL]-CY  |

|SBI n    |DE|*****| 7|Subtract with Borrow Immed|A=A-n-CY     |

|SHLD a   |22|-----|16|Store HL Direct           |[a]=HL       |

|SIM      |30|-----| 4|Set Interrupt Mask        |mask=A       |

|SPHL     |F9|-----| 6|Move HL to SP             |SP=HL        |

|STA a    |32|-----|13|Store Accumulator         |[a]=A        |

|STAX B   |02|-----| 7|Store Accumulator indirect|[BC]=A       |

|STAX D   |12|-----| 7|Store Accumulator indirect|[DE]=A       |

|STC      |37|----1| 4|Set Carry                 |CY=1         |

|SUB r    |97|*****| 4|Subtract                  |A=A-r   (22X)|

|SUB M    |96|*****| 7|Subtract Memory           |A=A-[HL]     |

|SUI n    |D6|*****| 7|Subtract Immediate        |A=A-n        |

|XCHG     |EB|-----| 4|Exchange HL with DE       |HL<->DE      |

|XRA r    |AF|**0*0| 4|Exclusive OR Accumulator  |A=Axr   (25X)|

|XRA M    |AE|**0*0| 7|Exclusive OR Accumulator  |A=Ax[HL]     |

|XRI n    |EE|**0*0| 7|Exclusive OR Immediate    |A=Axn        |

|XTHL     |E3|-----|16|Exchange stack Top with HL|[SP]<->HL    |

|------------+-----+--+----------------------------------------|

| PSW        |-*01 |  |Flag unaffected/affected/reset/set      |

| S          |S    |  |Sign (Bit 7)                            |

| Z          | Z   |  |Zero (Bit 6)                            |

| AC         |  A  |  |Auxilary Carry (Bit 4)                  |

| P          |   P |  |Parity (Bit 2)                          |

| CY         |    C|  |Carry (Bit 0)                           |

|---------------------+----------------------------------------|

| a p                 |Direct addressing                       |

| M z                 |Register indirect addressing            |

| n nn                |Immediate addressing                    |

| r                   |Register addressing                     |

|---------------------+----------------------------------------|

|DB n(,n)             |Define Byte(s)                          |

|DB 'string'          |Define Byte ASCII character string      |

|DS nn                |Define Storage Block                    |

|DW nn(,nn)           |Define Word(s)                          |

|---------------------+----------------------------------------|

| A  B  C  D  E  H  L |Registers (8-bit)                       |

| BC  DE  HL          |Register pairs (16-bit)                 |

| PC                  |Program Counter register (16-bit)       |

| PSW                 |Processor Status Word (8-bit)           |

| SP                  |Stack Pointer register (16-bit)         |

|---------------------+----------------------------------------|

| a  nn               |16-bit address/data (0 to 65535)        |

| n  p                |8-bit data/port (0 to 255)              |

| r                   |Register (X=B,C,D,E,H,L,M,A)            |

| z                   |Vector (X=0H,8H,10H,18H,20H,28H,30H,38H)|

|---------------------+----------------------------------------|

| +  -                |Arithmetic addition/subtraction         |

| &  ~                |Logical AND/NOT                         |

| v  x                |Logical inclusive/exclusive OR          |

| <-  ->              |Rotate left/right                       |

| <->                 |Exchange                                |

| [ ]                 |Indirect addressing                     |

| [ ]+  -[ ]          |Indirect address auto-inc/decrement     |

| { }                 |Combination operands                    |

| ( X )               |Octal op code where X is a 3-bit code   |

| If ( ~s)            |Number of cycles if condition true      |

----------------------------------------------------------------

 

On to lesson 19

Table of Contents